In mathematics, Clifford's theorem on special divisors is a result of W. K. Clifford on algebraic curves, showing the constraints on special linear systems on a curve C.
If D is a divisor on C, then D is (abstractly) a formal sum of points P on C (with integer coefficients), and in this application a set of constraints to be applied to functions on C (if C is a Riemann surface, these are meromorphic functions, and in general lie in the function field of C). Functions in this sense have a divisor of zeros and poles, counted with multiplicity; a divisor D is here of interest as a set of constraints on functions, insisting that poles at given points are only as bad as the positive coefficients in D indicate, and that zeros at points in D with a negative coefficient have at least that multiplicity. The dimension of the vector space
of such functions is finite, and denoted ℓ(D). Conventionally the linear system of divisors attached to D is then attributed dimension r(D) = ℓ(D) − 1, which is the dimension of the projective space parametrizing it.
The other significant invariant of D is its degree, d, which is the sum of all its coefficients.
A divisor is called special if ℓ(K − D) > 0, where K is the canonical divisor.[1]
In this notation, Clifford's theorem is the statement that for a special divisor D ≠ 0,
together with the information that the case of equality here is only for C a hyperelliptic curve, and D an integral multiple of the canonical divisor K.
The Clifford index of C is then defined as the minimum value of the d − 2r(D), taken over all special divisors. Clifford's theorem is then the statement that this is non-negative. The Clifford index for a generic curve of genus g is known to be the floor function of
A conjecture of Mark Green states that the Clifford index for a curve over the complex numbers that is not hyperelliptic should be determined by the extent to which C as canonical curve has linear syzygies. In detail, the invariant a(C) is determined by the minimal free resolution of the homogeneous coordinate ring of C in its canonical embedding, as the largest index i for which the graded Betti number βi, i + 2 is zero. Green and Lazarsfeld showed that a(C) + 1 is a lower bound for the Clifford index, and Green's conjecture is that equality always holds. There are numerous partial results.[2]